Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
not(x) → xor(x, true)
implies(x, y) → xor(and(x, y), xor(x, true))
or(x, y) → xor(and(x, y), xor(x, y))
=(x, y) → xor(x, xor(y, true))
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
not(x) → xor(x, true)
implies(x, y) → xor(and(x, y), xor(x, true))
or(x, y) → xor(and(x, y), xor(x, y))
=(x, y) → xor(x, xor(y, true))
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Quasi-Precedence:
not1 > xor2
not1 > true
implies2 > xor2
implies2 > true
implies2 > and2
or2 > xor2
or2 > and2
=2 > xor2
=2 > true
Status: trivial